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1 Scope of the Chapter

This chapter together with Chapters f07 and f08 provides facilities for two types of problem:

(i) Matrix Inversion (Chapter f07)

(ii) Matrix Factorizations (Chapters f01, f07 and f08)

These problems are discussed separately in Section 2.1 and Section 2.2.

2 Background to the Problems

2.1 Matrix Inversion

(i) Non-singular square matrices of order n.

If A, a square matrix of order n, is non-singular (has rank n), then its inverse X exists and satisfies
the equations AX ¼ XA ¼ I (the identity or unit matrix).

It is worth noting that if AX � I ¼ R, so that R is the ‘residual’ matrix, then a bound on the relative
error is given by kRk, i.e.,

kX �A�1k
kA�1k

� kRk:

(ii) General real rectangular matrices.

A real matrix A has no inverse if it is square (n by n) and singular (has rank < n), or if it is of shape
(m by n) with m 6¼ n, but there is a Generalized or Pseudo Inverse Z which satisfies the equations

AZA ¼ A; ZAZ ¼ Z; ðAZÞT ¼ AZ; ðZAÞT ¼ ZA

(which of course are also satisfied by the inverse X of A if A is square and non-singular).

(a) if m � n and rankðAÞ ¼ n then A can be factorized using a QR factorization, given by

A ¼ Q
R
0

��
;

where Q is an m by m orthogonal matrix and R is an n by n, non-singular, upper triangular
matrix. The pseudo-inverse of A is then given by

Z ¼ R�1 ~QQT ;

where ~QQ consists of the first n columns of Q.

(b) if m � n and rankðAÞ ¼ m then A can be factorized using an RQ factorization, given by

A ¼ ðR 0ÞPT

where P is an n by n orthogonal matrix and R is an m by m, non-singular, upper triangular
matrix. The pseudo-inverse of A is then given by

Z ¼ ~PPR�1;

where ~PP consists of the first m columns of P .

(c) if m � n and rankðAÞ ¼ r � n then A can be factorized using a QR factorization, with column
interchanges, as

A ¼ Q
R
0

��
PT ;

where Q is an m by m orthogonal matrix, R is an r by n upper trapezoidal matrix and P is an n
by n permutation matrix. The pseudo inverse of A is then given by

Z ¼ PRT ðRRT Þ�1 ~QQT ;

where ~QQ consists of the first r columns of Q.
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(d) if rankðAÞ ¼ r � k ¼ minðm;nÞ, then A can be factorized as the singular value decomposition

A ¼ QDPT ;

where Q is an m by m orthogonal matrix, P is an n by n orthogonal matrix and D is an m by n
diagonal matrix with non-negative diagonal elements. The first k columns of Q and P are the
left- and right-hand singular vectors of A respectively and the k diagonal elements of D are
the singular values of A. D may be chosen so that

d1 � d2 � � � � � dk � 0

and in this case if rankðAÞ ¼ r then

d1 � d2 � � � � � dr > 0; drþ1 ¼ � � � ¼ dk ¼ 0:

If ~QQ and ~PP consist of the first r columns of Q and P respectively and � is an r by r diagonal
matrix with diagonal elements d1; d2; . . . ; dr then A is given by

A ¼ ~QQ�~PPT

and the pseudo inverse of A is given by

Z ¼ ~PP��1 ~QQT :

Notice that

ATA ¼ P ðDTDÞPT

which is the classical eigenvalue (spectral) factorization of ATA.

(e) if A is complex then the above relationships are still true if we use ‘unitary’ in place of
‘orthogonal’ and conjugate transpose in place of transpose. For example, the singular value
decomposition of A is

A ¼ QDPH;

where Q and P are unitary, PH the conjugate transpose of P and D is as in (d) above.

2.2 Matrix Factorizations

The functions in this section perform matrix factorizations which are required for the solution of systems of
linear equations with various special structures. A few functions which perform associated computations
are also included.

Other functions for matrix factorizations are to be found in Chapter f03, Chapter f07, Chapter f08 and
Chapter f11.

3 Recommendations on Choice and Use of Available Functions

3.1 Matrix Inversion

Note: before using any function for matrix inversion, consider carefully whether it is really needed.

Although the solution of a set of linear equations Ax ¼ b can be written as x ¼ A�1b, the solution should

never be computed by first inverting A and then computing A�1b; the functions in Chapter f04 or
Chapter f07 should always be used to solve such sets of equations directly; they are faster in execution,
and numerically more stable and accurate. Similar remarks apply to the solution of least-squares problems
which again should be solved by using the functions in Chapter f02 or Chapter f08 rather than by
computing a pseudo inverse.

(a) Non-singular square matrices of order n

This chapter describes techniques for inverting a general real matrix A and matrices which are
positive-definite (have all eigenvalues positive) and are either real and symmetric or complex and
Hermitian. It is wasteful and uneconomical not to use the appropriate function when a matrix is
known to have one of these special forms. A general function must be used when the matrix is not
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known to be positive-definite. In most functions the inverse is computed by solving the linear
equations Axi ¼ ei, for i ¼ 1; 2; . . . ; n, where ei is the ith column of the identity matrix.

The residual matrix R ¼ AX � I, where X is a computed inverse of A, conveys useful information in
that kRk is a bound on the relative error in X.

The decision trees for inversion show which functions in Chapter f07 should be used for the inversion
of other special types of matrices not treated in the chapter.

(b) General real rectangular matrices

For real matrices nag_dgeqrf (f08aec) returns a QR factorization of A and nag_dgeqpf (f08bec)
returns the QR factorization with column interchanges. The corresponding complex functions are
nag_zgeqrf (f08asc) and nag_zgeqpf (f08bsc) respectively. Functions are also provided to form the
orthogonal matrices and transform by the orthogonal matrices following the use of the above
functions.

nag_real_svd (f02wec) and nag_complex_svd (f02xec) compute the singular value decomposition as
described in Section 2 for real and complex matrices respectively. If A has rank r � k ¼ minðm;nÞ
then the k� r smallest singular values will be negligible and the pseudo inverse of A can be obtained

as Z ¼ P��1QT as described in Section 2. If the rank of A is not known in advance it can be
estimated from the singular values (see Section 2.2 of the f04 Chapter Introduction).

3.2 Matrix Factorizations

Each of these functions serves a special purpose required for the solution of sets of simultaneous linear
equations or the eigenvalue problem. For further details users should consult Section 3 of the f02 Chapter
Introduction, Section 4 of the f02 Chapter Introduction, Section 3 of the f04 Chapter Introduction or
Section 4 of the f04 Chapter Introduction.

For the factorization of sparse matrices, see nag_sparse_nsym_fac (f11dac) and nag_sparse_sym_chol_fac
(f11jac). These functions should be used only when A is not banded and when the total number of non-
zero elements is less than 10% of the total number of elements. In all other cases either the band functions
or the general functions should be used.

4 Decision Tree

The decision trees show the functions in this chapter and in Chapter f04 that should be used for inverting
matrices of various types. Functions marked with an asterisk (�) only perform part of the computation –
see Section 3.1 for further advice.

Is A an n by n matrix of rank
n? yes Is A a real matrix? yes

see Tree 1

no

see Tree 2

no

see Tree 3
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Tree 1: Inverse of a real n by n matrix of full rank

Is A a band matrix? yes
See Note 1.

no

Is A symmetric? yes
Is A positive-
definite? yes

Is one triangle of A
stored as a linear
array?

yes
f07gdc and f07gjc

no

f07fdc and f07fjc

no

Is one triangle of A
stored as a linear
array?

yes
f07pdc and f07pjc

no

f07mdc and f07mjc

no

Is A triangular? yes
Is A stored as a
linear array? yes

f07ujc

no

f07tjc

no

f07adc and f07ajc

Note 1: the inverse of a band matrix A does not in general have the same shape as A, and no functions are

provided specifically for finding such an inverse. The matrix must either be treated as a full matrix, or the

equations AX ¼ B must be solved, where B has been initialised to the identity matrix I. In the latter case, see

the decision trees in Section 4 of the f04 Chapter Introduction.
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Tree 2: Inverse of a complex n by n matrix of full rank

Is A a band matrix? yes
See Note 1 under

Tree 1.

no

Is A Hermitian? yes
Is A positive-
definite? yes

Is one triangle of A
stored as a linear
array?

yes
f07grc and f07gwc

no

f07frc and f07fwc

no

Is one triangle A
stored as a linear
array?

yes
f07prc and f07pwc

no

f07mrc and f07mwc

no

Is A symmetric? yes

Is one triangle of A
stored as a linear
array?

yes
f07qrc and f07qwc

no

f07nrc and f07nwc

no

Is A triangular? yes
Is A stored as a
linear array? yes

f07uwc

no

f07twc

no

f07arc and f07awc
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Tree 3: Pseudo-inverses

Is A a complex
matrix? yes Is A of full rank? yes

Is A an m by n
matrix with m < n? yes

f08avc and f08axc
or f08awc

no

f08asc and f08auc
or f08atc

no

f02xec*

no

Is A of full rank? yes
Is A an m by n
matrix with m < n? yes

f08ahc and f08akc
or f08ajc

no

f08aec and f08agc
or f08afc

no

f02wec*

5 Index

Matrix Transformations
Complex Hermitian positive-definite matrix,

UUH factorization ..................................................................... nag_complex_cholesky (f01bnc)
Complex m by nðm � nÞ matrix,

QR factorization .................................................................................... nag_complex_qr (f01rcc)
Complex matrix,

apply orthogonal matrix ............................................................. nag_complex_apply_q (f01rdc)
form unitary matrix ....................................................................... nag_complex_form_q (f01rec)

Real band symmetric positive-definite matrix,
variable bandwidth,

LDLT factorization .................................................. nag_real_cholesky_skyline (f01mcc)
Real m by nðm � nÞ matrix,

QR factorization ........................................................................................... nag_real_qr (f01qcc)
Real matrix,

apply orthogonal matrix ................................................................... nag_real_apply_q (f01qdc)
form orthogonal matrix ....................................................................... nag_real_form_q (f01qec)

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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